Nonlinear quantum optics in microwave circuits

Photons generally do not interact with each other unless many of them fly through a special material (like certain crystals). These interactions can be useful for preparing interesting quantum states of light, including single photons or entanglement. Nonlinear interactions between photons can be much stronger for microwave photons in superconducting quantum circuits. I want to find out what interesting states we can prepare in these circuits and how we can efficiently verify their existence. Read more
Optomechanical levitation with coherent scattering

The main limitation of optomechanical systems are mechanical losses. Mechanical resonators are clamped to substrates which destroys their fragile quantum states. A solution to this problem is to trap the mechanical resonator (a small particle) using light, which confines its motion to a narrow region around the intensity maximum. The motion can then be precisely controlled by scattering the trapping light into an optical cavity. I study how these techniques can be used to control the motion of one or more particles in one cavity.